解题思路:根据∠A+∠B=110°可得∠A=110°-∠B,而∠A+∠B+∠C=180°,∠B=∠C,易得110°-∠B+∠B+∠B=180°,易求∠B,进而可求∠A、∠C.
∵∠A+∠B=110°,
∴∠A=110°-∠B,
∵∠A+∠B+∠C=180°,∠B=∠C,
∴110°-∠B+∠B+∠B=180°,
解得∠B=70°,
∴∠A=40°,∠C=70°.
答:∠A为40°,∠B为70°,∠C为70°.
点评:
本题考点: 三角形内角和定理.
考点点评: 本题考查了三角形内角和定理,解题的关键是注意用∠B表示∠A和∠C.