(1)如图:连接OC,
∵DC切⊙O于C,
∴AD⊥CD,
∴∠ADC=∠OCF=90°,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
即AC平分∠BAD;
(2)连接BC,
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠OAC=∠OCA,
∴△ADC∽△ACB,
∴
,
在Rt△ADC中,AC=2
,CD=2,
∴AD=4,
∴
,
∴AB=5.
(1)如图:连接OC,
∵DC切⊙O于C,
∴AD⊥CD,
∴∠ADC=∠OCF=90°,
∴AD∥OC,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
即AC平分∠BAD;
(2)连接BC,
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠OAC=∠OCA,
∴△ADC∽△ACB,
∴
,
在Rt△ADC中,AC=2
,CD=2,
∴AD=4,
∴
,
∴AB=5.