解题思路:(1)木块由A到B点过程中,只有重力做功,所以过程中机械能守恒;再取从A点到C点过程,由功能关系可求得动摩擦因数;
(2)假设木块运动一段后停止的位移,则由功能关系,结合题意可得运动的位移,从而确定木块停在何处;
(3)假设木块运动滑至E点,绳全部悬于桌边外,根据受力分析与运动分析,可得结果与假设茅盾.从而确定假设的不正确.
(1)木块从A处释放后滑至B点的过程中,由机械能守恒得
3mg×
3
2L−2mgL=
1
2(6m+M)v2①
则木块滑至B点时的速度v=
5mgL
M+6m②
木块从A处滑至C点的过程中,由功能关系得
4mg×2L-2mgL=μMgL③
由③式得 μ=
6m
M④
(2)若μ′=
21m
4M<μ,
设木块能从B点向右滑动x最终停止,由功能关系得
(
3L+x
L)mg
3L+x
2−2mgL=μ′Mgx⑤
将μ′=
21m
4M代入⑤式并整理得 2x2-9Lx+10L2=0
解得x=2L (x=2.5L不合题意舍去)
即木块将从B点再滑动2L最终停在D处.
(3)不存在符合要求的μ值,即不可能使木块从A处放手后最终停在E处且不再运动.
这是由于当μ=
6m
M时,若木块滑至E点,恰好有f=μMg=6mg,此时绳全部悬于桌边外,对木块的拉力恰好也为6mg,而从(2)的结果知,更使木块继续向E点滑行,必须再减小μ值,因而木块尚未滑至E点时,木块所受滑动摩擦力已与悬绳拉力相等,此时,再向E点滑行时,悬绳对木块拉力将大于木块受到的滑动摩擦力而使合力向右,木块又重新获得加速度.因此不可能保持静止状态.
答:(1)求木块刚滑至B点时的速度v=
5mgL
M+6m;木块与桌面的BE段的动摩擦因数 μ=
6m
M;
(2)若木块在BE段与桌面的动摩擦因数变为μ′=
21m
4M,则木块最终停在木块将从B点再滑动2L最终停在D处;
(3)不存在符合要求的μ值,即不可能使木块从A处放手后最终停在E处且不再运动.
点评:
本题考点: 机械能守恒定律;功能关系.
考点点评: 让学生掌握机械能守恒定律及其成立条件,并理解功能关系.同时还运用假设法去分析与解决问题.