证明:
∵BD=CD,∠BDC=120
∴∠CBD=∠BCD=(180º-120º)÷2=30º
∵⊿ABC为等边三角形,∴∠ABC=∠ACB=60º
那么∠ABD=∠ACB=60º+30º=90º
延长AC到P,使PC=BE,连接DP
在⊿EBD和⊿PCD中
∵∠EBD=∠PCD=90º,BE=PC,BD=CD
∴⊿EBD≌⊿PCD(SAS)
∴DE =DP,∠BDE=∠CDP
∵∠PDF=∠PDC+∠CDF=∠BDE+∠CDF=∠BDC-∠EDF=120º-60º=60º
∴∠PDF=∠EDF
又∵ED=PD,FD=FD
∴⊿EDF≌⊿PDF(SAS)
∴EF=FP=FC+CP
∵CP=BE
∴EF=FC+BE