∵f(a-x)=f(a+x),
∴f(2a-x)=f(a+(a-x))=f(a-(a-x))=f(x),
同理,f(2b-x)=f(b+(b-x))=f(b-(b-x))=f(x),
∴f(2a-x)= f(2b-x)
f(2(a-b)-x)=f(2a-(2b+x))=f(2b-(2b-x))=f(x)
∴T=2|a-b|,(a≠b).
∵f(a-x)=f(a+x),
∴f(2a-x)=f(a+(a-x))=f(a-(a-x))=f(x),
同理,f(2b-x)=f(b+(b-x))=f(b-(b-x))=f(x),
∴f(2a-x)= f(2b-x)
f(2(a-b)-x)=f(2a-(2b+x))=f(2b-(2b-x))=f(x)
∴T=2|a-b|,(a≠b).