x^4-9x^3-18x^2+184x+192
=x^4-8x^3 - x^3+8x^2 -26x^2+208x - 24x+192
=x^3(x-8) - x^2(x-8) -26x(x-8) - 24(x-8)
=(x-8)*(x^3-x^2-26x-24)
其中 x^3 -x^2 -26x -24
=x^3 -6x^2 + 5x^2 -30x + 4x-24
=x^2(x-6) + 5x(x-6) + 4(x-6)
=(x-6)(x^2+5x+4)
=(x-6)(x+4)(x+1)
因此 原式 = (x-8)(x-6)(x+1)(x+4)