平行四边形
两组对边分别平行的四边形叫做平行四边形.
1、平行四边形的对边平行且相等;
2、平行四边形的对角相等;
3、平行四边形的对角线互相平分.
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形;
1、夹在两条平行线间的平行线段相等;
矩 形
有一个角是直角的平行四边形叫做矩形(长方形).
1、矩形的对边平行且相等;
2、矩形的四个角都是直角;
3、矩形的对角线互相平分且相等.1、有一个角是直角的平行四边形是矩形;
2、有三个角是直角的四边形是矩形;
3、对角线相等的平行四边形是矩形.
1、直角三角形斜边上的中线等于斜边的一半.
菱 形
有一组邻边相等的平行四边形叫做菱形.
1、菱形的对边平行,四条边都相等;
2、菱形的对角相等;
3、菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
1、有一组邻边相等的平行四边形是菱形;
2、四边都相等的四边形是菱形;
3、对角线互相垂直的平行四边形是菱形.菱形的面积等于它的两条对角线长的积的一半.
正 方 形
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
1、正方形的对边平行,四条边都相等;
2、正方形的四个角都是直角;
3、正方形的对角线互相垂直平分且相等,并且每一条对角线平分一组对角.
1、有一组邻边相等并且有一个角是直角的平行四边形是正方形;
2、有一组邻边相等的矩形是正方形;
3、有一个角是直角的菱形是正方形;
4、即是矩形又是菱形的四边形是正方形.
中心对称
中心对称图形
1、把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称(中心对称);
2、把一个图形绕它的某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.性质:
1、关于中心对称的两个图形是全等形;
2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;
3、如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
1、以下图形是中心对称图形:直线、线段、平行四边形、矩形、菱形、正方形等.
2、以下图形不是中心对称图形:射线、角、三角形、等边三角形、等腰三角形等.
3、特别注意:平行四边形是中心对称图形但不是轴对称图形.
函数表示每个输入值对应唯一输出值的一种对应关系.函数f中对应输入值的输出值x的标准符号为f(x).包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域.若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数.
1.(1)任意角的概念以及弧度制.正确表示象限角、区间角、终边相同的角,熟练地进行角度制与弧度制的换算. (2)任意角的三角函数定义,三角函数的符号变化规律,三角函数线的意义. 2.(1)同角三角函数的基本关系和诱导公式. (2)已知三角函数值求角. 3.函数y=sinx、y=cosx、y=tanx以及y=Asin(ωx+φ)的图像和“五点法”作图、图像法变换,理解A、ω、φ的物理意义. 4.三角函数的定义域、值域、奇偶性、单调性、周期性. 5.两角和与差的三角函数、倍角公式,能正确地运用三角公式进行简单的三角函数式的化简、求值和恒等证明. 本章包括任意角的三角函数、两角和与差的三角函数、三角函数的图像和性质三部分. 三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用.