已知关于x的一元二次方程ax2+bx+c=0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系

2个回答

  • 解题思路:先利用两根分别表示出错误的方程为:甲,设k(x-2)(x-4)=0得kx2-6kx+8k=0;乙,设p(x+1)(x-4)=0得px2-3px-4p=0,无论怎么错误,甲和乙的方程里面常量相同,就是8k=-4p,即[k/p]=-[1/2],把第一个方程中的一次项和常数项,第二个方程中的二次项代入所求代数式中化简后可解.

    对于甲:设k(x-2)(x-4)=0

    得kx2-6kx+8k=0.

    对于乙:设p(x+1)(x-4)=0

    得px2-3px-4p=0

    从这两个方程可看出:无论怎么错误,甲和乙的方程里面常量相等,

    所以8k=-4p,即[k/p]=-[1/2],p=-2k,

    则[2b+3c/a]=[−12k+24k/−2k]=-6.

    故答案为:-6.

    点评:

    本题考点: 根与系数的关系.

    考点点评: 此题考查了一元二次方程的特点,以及方程之间的关系,难度不小.需要利用方程的两根来表示出两个错误的方程,并通过比较后,得出初步判断为无论怎么错误,甲和乙的方程里面常量相等这个关键的等量关系,然后通过等量代换求解.