(1)b=3,c/a=4/5,c=4a/5,
b^2=a^2-c^2=(9/25)a^2=9,a^2=25,
椭圆方程是x^2/25+y^2/9=1.
设P(x,y),P1(x1,y1),则P2(-x1,-y1),
x^2/25+y^2/9=1.
x1^2/25+y1^2/9=1.
相减得(x2-x1^2)/25+(y^2-y1^2)/9=0,
(y^2-y1^2)/(x^2-x1^2)=-9/25,
k1=(y-y1)/(x-x1),k2=(y+y1)/(x+x1),
∴k1*k2=(y^2-y1^2)/(x^2-x1^2)=-9/25.