解由x∈【 -π/2,π/2】
得-π/2≤x≤π/2
即-π/3≤x+π/6≤2π/3
故当x+π/6=π/2时,sin(x+π/6)=1,此时y=2sin(x+π/6)有最大值2
当x+π/6=-π/3时,sin(x+π/6)=-√3/2,此时y=2sin(x+π/6)有最小值-√3.
故函数的值域为[-√3,2].
解由x∈【 -π/2,π/2】
得-π/2≤x≤π/2
即-π/3≤x+π/6≤2π/3
故当x+π/6=π/2时,sin(x+π/6)=1,此时y=2sin(x+π/6)有最大值2
当x+π/6=-π/3时,sin(x+π/6)=-√3/2,此时y=2sin(x+π/6)有最小值-√3.
故函数的值域为[-√3,2].