设动圆的圆心坐标是(m,n),则半径r=|n|
圆心到y=x的距离是d=|m-n|/根号2
勾股定理得:r^2=d^2+(2/2)^2
n^2=(m-n)^2/2+1
2n^2=m^2-2mn+n^2+2
m^2-2mn-n^2+2=0
即方程是x^2-2xy-y^2+2=0.
设动圆的圆心坐标是(m,n),则半径r=|n|
圆心到y=x的距离是d=|m-n|/根号2
勾股定理得:r^2=d^2+(2/2)^2
n^2=(m-n)^2/2+1
2n^2=m^2-2mn+n^2+2
m^2-2mn-n^2+2=0
即方程是x^2-2xy-y^2+2=0.