∵(sinα/cosα)cosα=sinα, ∴tanαcosα=sinα, ∴(tanα)^2(cosα)^2=(sinα)^2,
∴(tanα)^2[1-(sinα)^2]=(sinα)^2,
∴(tanα)^2-(tanα)^2(sinα)^2=(sinα)^2,
∴(tanα)^2-(sinα)^2=(tanα)^2(sinα)^2.
∵(sinα/cosα)cosα=sinα, ∴tanαcosα=sinα, ∴(tanα)^2(cosα)^2=(sinα)^2,
∴(tanα)^2[1-(sinα)^2]=(sinα)^2,
∴(tanα)^2-(tanα)^2(sinα)^2=(sinα)^2,
∴(tanα)^2-(sinα)^2=(tanα)^2(sinα)^2.