(1)∵抛物线y=ax2+bx+3与y轴交于点C
∴C(0,3),
∴OC=3
∵OB=OC,
∴OB=3
∵抛物线的对称轴是x=1,
∴B(3,0),A(-1,0)
∴
a?b+3=0
9a+3b+3=0
解得
a=?1
b=2
∴抛物线的解析式为y=-x2+2x+3;
(2)由题意,抛物线只能沿y轴向下平移
∵y=-x2+2x+3=-(x-1)2+4
∴设平移后的抛物线的解析式为y=-(x-1)2+4-t(t>0)
当原点O落在平移后的抛物线上时,把(0,0)代入得:
0=-(0-1)2+4-t,
解得t=3;
当平移后的抛物线的顶点落在x轴上时,x=1,y=0
即0=-(1-1)2+4-t,
解得t=4,
∵平移后的抛物线与线段OB有且只有一个交点
∴0<t<3或t=4
(3)取AC的中点M,过M作MN⊥AC交OC于N,连接AN
则AN=CN,
∴∠ACO=∠CAN
∵∠BCP=∠BAC-∠ACO,
∴∠BCP=∠BAC-∠CAN=∠NAO
∵∠ACO=∠NCM,∠AOC=∠CMN=90°,
∴△MCN∽△OCA,
∴[CM/CN]=[CO/CA]
∴CN=[CM?CA/CO]=[CA2/2CO]=
12+32
2×3=[5/3]
∴NO=CO-CN=3-[5/3]=[4/3],
∴tan∠NAO=[NO/AO]=[4/3];
当点P在BC上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E
∵∠OCB=∠DBE,∠BOC=∠BED=90°,
∴△BDE∽△CBO,
∴