1)、证:f(1)=0 => a+b+c=0 =>a+c=-b,
因为a>b>c,所以a>0,c(a+f(m1))(a+f(m2))=0
=>f(m1)=-a,或f(m2)=-a
=>am1^2+bm1+c+a=0
=>delta=b^2-4a(c+a)=b^2+4ab=b(4a+b)
因为a>0,a>b>c,a+b=-c,c0,
要使方程有根,则b≥0,即证.
2)、f(1)=0,说明ax^2+bx+c=0中其中一根是x1=1
x2=-b/a-1=c/a,a+b+c=0,
被X轴所截的的线段长L=x1-x2=1-c/a=(a-c)/a=(a+a+b)/a=2+b/a
因为b≥0,a>0,所0≤b/a