(1998•河北)已知:如图,四边形ABCD为平行四边形,延长BA到E,延长DC到F,使BE=DF,AF交BC于H,CE

1个回答

  • 解题思路:由四边形ABCD是平行四边形可得到AB=CD,AB∥CD,因为=DF,所以AE=CF,因为AE∥CF,所以四边形AECF是平行四边形,所以可得到∠E=∠F,再证明∠EAG=∠FCH,由ASA即可证明:△AGE≌△CHF.

    证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵BE=DF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴∠E=∠F,又∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∴∠EAG=∠FCH,∵在△AGE和△CHF中,∠E=∠F...

    点评:

    本题考点: 平行四边形的判定与性质;全等三角形的判定与性质.

    考点点评: 本题考查了平行四边形的性质和判定、全等三角形的性质和判定,解题的关键是熟练掌握各种图形的判定方法和性质.