BC为圆O的直径,AD垂直于BC,过点B作弦BF交AD于E,交半圆O于点F,弦AC于BF交于点H,AE=BE

1个回答

  • 连接CF、AB、BD、DO

    BC是直径.AD垂直ABC,则=∠BAD=∠BDA

    又∠BDA=∠BCA

    BE=EA

    则∠ABE=∠BAE

    所以∠ABE=∠BAE=∠BAD=∠BDA=∠BDA=∠BCA

    ∠EHA=∠BCH+∠HBC=∠BDA+∠HBC=∠BAD+∠HBC

    =∠ABE+∠HBC=∠ABO

    ∠BOA=2∠BCA=2∠BDA=2∠BAD=∠BAD+∠ABE=∠AEH

    △ABO∽△AHE

    AH/AB=AE/AO

    AH/AE=AB/AO

    AH/BE=AB/AO

    AH/BE=2AB/BC=AB/AO

    AH*BC=2AB*BE