已知tan(兀/4+α)=3,计算①tanα ②2sinαcosα+3cos2α/5cos2α-3sin2α

3个回答

  • 解(1):

    ∵ tan(π/4+α)=(tanπ/4+tanα)/(1-tanπ/4×tanα)

    =(1+tanα)/(1-tanα)

    =3

    ∴ 3(1-tanα)=1+tanα

    3-3tanα=1+tanα

    4tanα=2

    ∴ tanα=1/2

    (2):

    ∵ tan2α=2tanα/(1-tan²α)

    =(2×1/2)/[1-(1/2)²]

    =1/(3/4)

    =4/3

    ∴ cos2α≠0

    ∴(2sinαcosα+3cos2α)/(5cos2α-3sin2α)

    =(sin2α+3cos2α)/(5cos2α-3sin2α)

    =[(sin2α+3cos2α)×1/cos2α]/[(5cos2α-3sin2α)×1/cos2α]

    =[(sin2α/cos2α)+3]/[5-3(sin2α/cos2α)]

    =(tan2α+3)/(5-3tan2α)

    =[(4/3)+3]/[5-3×(4/3)]

    =(13/3)/(5-4)

    =13/3