x^3+y^3=e^xy
对x求导
3x²+3y²*y'=e^(xy)*(xy)'
3x²+3y²*y'=e^(xy)*(y+x*y')
3x²+3y²*y'=e^(xy)*y+e^(xy)*x*y'
y'=[3x²-e^(xy)*y]/[e^(xy)*x-3y²]
即dy/dx=[3x²-e^(xy)*y]/[e^(xy)*x-3y²]
x=0,代入x^3+y^3=e^xy
0+y^3=1
y=1
代入dy/dx=[3x²-e^(xy)*y]/[e^(xy)*x-3y²]
所以dy/dx=(0-1)/(0-3)=1/3