由于P在P1P2P3内,因此存在实数t1、t2,使得P1P=t1P1P2+t2P1P3
而P1P=OP-OP1,P1P2=OP2-OP1,P1P3=OP3-OP1
代入上式,整理得OP=(1-t1-t2)OP1+t1OP2+t2OP3
于是k1=1-t1-t2,k2=t2,k3=t3
这样便有k1+k2+k3=1
由于P在P1P2P3内,因此存在实数t1、t2,使得P1P=t1P1P2+t2P1P3
而P1P=OP-OP1,P1P2=OP2-OP1,P1P3=OP3-OP1
代入上式,整理得OP=(1-t1-t2)OP1+t1OP2+t2OP3
于是k1=1-t1-t2,k2=t2,k3=t3
这样便有k1+k2+k3=1