(Ⅰ)f'(x)=lnx+1,x>0,…(2分)
由f'(x)=0得x=
1
e,…(3分)
所以,f(x)在区间(0,
1
e)上单调递减,在区间(
1
e,+∞)上单调递增.…(4分)
所以,x=
1
e是函数f(x)的极小值点,极大值点不存在.…(5分)
(Ⅱ)设切点坐标为(x0,y0),则y0=x0lnx0,…(6分)
切线的斜率为lnx0+1,
所以,lnx0+1=
y0+1
x0,…(7分)
解得x0=1,y0=0,…(8分)
所以直线l的方程为x-y-1=0.…(9分)
(Ⅲ)g(x)=xlnx-a(x-1),
则g'(x)=lnx+1-a,…(10分)
解g'(x)=0,得x=ea-1,
所以,在区间(0,ea-1)上,g(x)为递减函数,
在区间(ea-1,+∞)上,g(x)为递增函数.…(11分)
当ea-1≤1,即a≤1时,在区间[1,e]上,g(x)为递增函数,
所以g(x)最小值为g(1)=0.…(12分)
当1<ea-1<e,即1<a<2时,g(x)的最小值为g(ea-1)=a-ea-1.…(13分)
当ea-1≥e,即a≥2时,在区间[1,e]上,g(x)为递减函数,
所以g(x)最小值为g(e)=a+e-ae.…(14分)
综上,当a≤1时,g(x)最小值为0;当1<a<2时,g(x)的最小值a-ea-1;当a≥2时,g(x)的最小值为a+e-ae.