设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f(4)=0,则f-1(4)=?
1个回答
由函数f(x)的图象关于点(1,2)对称,可得
f(x+1)+f(1-x)=4,对任何x都成立
在上式中,取x=3,得到
f(4)+(-2)=4,即
f(-2)=4
从而f-1(4)=-2,完.
相关问题
设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f (4)=0,则f-1(4)=_____
设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f (4)=0,则f-1(4)=_____
设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f (4)=0,则f-1(4)=_____
设函数f(x)的图象关于点(1,2)对称,且存在反函数f -1 (x),f (4)=0,则f -1 (4)=_
设函数f(x)的图像关于点(1,2)对称,且存在反函数f^-1(x),f(4)=0.则f^-1(4)等于多少?
设函数f(x)的图象关于点(2,52)对称,且存在反函数f-1(x),若f(5)=0,则f-1(5)等于______.
设函数f(x)的图象关于点(1,[3/2])对称,且存在反函数f-1(x),若f(3)=0,则f-1(3)等于( )
设函数f(x)的图象关于点(1,[3/2])对称,且存在反函数f-1(x),若f(3)=0,则f-1(3)等于( )
设函数f(x)的图象关于点(1,[3/2])对称,且存在反函数f-1(x),若f(3)=0,则f-1(3)的值为( )
设函数f(x)的图象关于点(1.3/2)对称,且存在反函数,若f(3)=0则当x=3,反函数等于几