已知函数f(x)=sinωxsin(ωx+π/3)+cos^2ωx(x>0)的最小正周期为π(1)求ω的值(2)求函数f(x)在区间[-π/6,7π/12]的取值范围
(1)解析:f(x)=sinωxsin(ωx+π/3)+cos^2ωx=1/2sin^2ωx+√3/2sinωxcosωx+cos^2ωx
=1/2sin^2ωx+√3/4sin2ωx+cos^2ωx=1/2+√3/4sin2ωx+1/4(1+cos2ωx)
=3/4+√3/4sin2ωx+1/4cos2ωx=3/4+1/2sin(2ωx+π/6)
因为,f(x)的最小正周期为π
所以,2ω=2==>ω=1
(2)解析:因为,f(x)=3/4+1/2sin(2x+π/6)
单调增区间:2kπ-π/2