1、
令x=secy,dx=secytany dy
∫√(x²-1)/x dx
=∫tany/secy*secytany dy
=∫tan²y dy
=∫(sec²y-1) dy
=tany-y + C
=√(x²-1)-arcsecx + C
2、
∫1/[√x(x+1)] dx
=2∫1/[2√x*(x+1)] dx
=2∫1/[1+(√x)²] d√x
=2arctan(√x) + C
1、
令x=secy,dx=secytany dy
∫√(x²-1)/x dx
=∫tany/secy*secytany dy
=∫tan²y dy
=∫(sec²y-1) dy
=tany-y + C
=√(x²-1)-arcsecx + C
2、
∫1/[√x(x+1)] dx
=2∫1/[2√x*(x+1)] dx
=2∫1/[1+(√x)²] d√x
=2arctan(√x) + C