∫1/[(cosx)^4(sinx)]dx=∫[(sinx)^2+(cosx)^2]/[(cosx)^4(sinx)]dx
=∫(secx)^4dx+4∫(csc2x)^2dx
∫(secx)^4dx=∫(secx)^2[(tanx)^2+1]dx=∫[(tanx)^2+1]dtanx=(tanx)^3/3+tanx
∫(csc2x)^2dx=-1/2*cot2x
所以∫1/[(cosx)^4(sinx)]dx=(tanx)^3/3+tanx-2cot2x+C
∫1/[(cosx)^4(sinx)]dx=∫[(sinx)^2+(cosx)^2]/[(cosx)^4(sinx)]dx
=∫(secx)^4dx+4∫(csc2x)^2dx
∫(secx)^4dx=∫(secx)^2[(tanx)^2+1]dx=∫[(tanx)^2+1]dtanx=(tanx)^3/3+tanx
∫(csc2x)^2dx=-1/2*cot2x
所以∫1/[(cosx)^4(sinx)]dx=(tanx)^3/3+tanx-2cot2x+C