作DG⊥AB于G,连结FD,
由AD=BD得∠DAB=∠B,
又∵∠DAB=∠FCA,∴∠FCA=∠B,
又∵∠CAF=∠BAC,∴△ABC∽△ACF,
∴AC²=AF*AB,
∴AC=2,
∴CF=√5,BC=2√5,AD=√5,
由AE*CF=AF*AC得2/√5,
∴DE=AD-AE=3√5/5
作DG⊥AB于G,连结FD,
由AD=BD得∠DAB=∠B,
又∵∠DAB=∠FCA,∴∠FCA=∠B,
又∵∠CAF=∠BAC,∴△ABC∽△ACF,
∴AC²=AF*AB,
∴AC=2,
∴CF=√5,BC=2√5,AD=√5,
由AE*CF=AF*AC得2/√5,
∴DE=AD-AE=3√5/5