设等差数列{an}的首项为a1,公差为d1,则有:An=(a1+an)n/2=[a1+a1+(n-1)d1]n/2=(2a1+nd1-d1)n/2=(2a1-d1+nd1)n/2.同理Bn=(2b1-d2+nd2)n/2.所以:An/Bn=(2a1-d1+nd1)/(2b1-d2+bd2)=(7n+1)/(4n+27) 所以:2a1-d1=1,d1=7; 2b1-d2=27,d2=4 所以:a1=4,d1=7,b1=31/2,d2=4.an/bn=[a1+(n-1)d1]/[b1+(n-1)d2]=(14n-6)/(8n+23).所以a5/b5=64/63请采纳回答!
等差数列{an},{bn}的前n项和分别为An,Bn,An/Bn=7n+1/4n+27,a5/b5等于多少
1个回答
相关问题
-
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
-
等差数列{an} {bn}前n项和为An Bn,An/Bn=(7n+2)/(4n+27),求an/bn
-
已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn=(7n+1)/(4n+27),则an/bn=
-
若等差数列an bn的前n项和An Bn满足An/Bn=(7n+1)/(4n+27),求a9/b13
-
等差数列前n项和问题等差数列{an}{bn}前n项和分别为An和Bn.如果An/Bn=(7n+4)/(n-3)那么a9/
-
等差数列{An},{bn}的前n项和为An,Bn,且An/Bn=n/3n-2,则a5/b5=?
-
等差数列{an},{bn}中的前n项和分别是An,Bn,且An/Bn=n/3n-2,则a5/b5=多少
-
若两个等差数列{an},{bn}的前n 项和分别为An和Bn,且满足An/Bn=(7n+1)/(4n+27),则a11/
-
设等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=(3n+1)/(2n-5),求liman/bn
-
已知等差数列{an}和{bn}的前n项和分别为An和Bn,且满足An/Bn=(7n+1)/(4n+27),n属于正整数,