当 n=1,
f(n)=1
当n>=2,
f(n)=f(n-1)+4×(n-1)
如:
f(2)=f(1)+4×(2-1)=1+4×1=5
f(3)=f(2)+4×(3-1)=5+4×2=13
f(4)=f(3)+4×(4-1)=13+4×3=25
相邻两项的差为4的整数倍
a1=1
a2=a1+4×1
a3=a2+4×2
……
an=a(n-1)+4(n-1)
叠加,得
通项公式 an=1+2n(n-1)
当 n=1,
f(n)=1
当n>=2,
f(n)=f(n-1)+4×(n-1)
如:
f(2)=f(1)+4×(2-1)=1+4×1=5
f(3)=f(2)+4×(3-1)=5+4×2=13
f(4)=f(3)+4×(4-1)=13+4×3=25
相邻两项的差为4的整数倍
a1=1
a2=a1+4×1
a3=a2+4×2
……
an=a(n-1)+4(n-1)
叠加,得
通项公式 an=1+2n(n-1)