一道关于数列的填空已知{an},{bn}为等差数列,Sn,Tn分别为其前n项和,若Sn/Tn=(2n+3)/(n+1)
2个回答
a3/b3
=2a3/2b3
=(a1+a5)/(b1+b5)
=[(a1+a5)*5/2]/[(b1+b5)*5/2]
=S5/T5
=(2*5+3)/(5+1)
=13/6
相关问题
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
已知两个等差数列{an},{bn}的前n项的和分别为Sn,Tn.若Sn/Tn=(5n+3)/(2n-1).求an/bn
等差数列An,Bn的前n项合分别为Sn和Tn,若Sn/Tn=2n/3n+1,求An/Bn的表达式.
设Sn ,Tn分别为等差数列{an}{bn}的前n项和,Sn/Tn=(5n-2)/(n+3),则an/bn=?
已知两个等差数列{an},{bn}的前n项和分别是Sn,Tn,若 Sn/Tn =(2n)/(3n+1),则 an/bn=
等差数列an`bn`的前n项和分别为Sn`Tn.若Sn/Tn=(7n+1)/(4n+27),求an/bn
已知{an},{bn}均为等差数列,其前n项之和分别为Sn、 Tn,若Sn/Tn=(2n+2)/(n+3),求a10/b
1.已知两个等差数列An,Bn,前n项和分别为Sn,Tn,且Sn/Tn=(2n+2)/(n+2),则An/Bn=
等差数列{an} {bn}的前n项的分别为Sn Tn.若Sn/Tn=2n/(3n+1),则求an/bn的极限