1.极限lim(x趋于0)∫(下0上X)ln(cost)dt/x3次方=?

1个回答

  • 1.原式=lim(x->0)∫(0,x)ln(cost)dt/x³

    =lim(x->0)[ln(cosx)/3x²] (0/0型,应用一次罗比达法则)

    =lim(x->0)[(-sinx/cosx)/6x] (0/0型,应用再一次罗比达法则)

    =lim(x->0)[(sinx/x)*(-1/6cosx)]

    =lim(x->0)[(sinx/x)*lim(x->0)(-1/6cosx)

    =1*(-1/6)

    =-1/6.

    2.原式=∫(-1,3)(|2-x|)dx

    =∫(-1,0)(x-2)dx+∫(0,3)(2-x)dx

    =(x²/2-2x)|(-1,0)+(2x-x²/2)|(0,3)

    =(-1/2-2)+(6-9/2)

    =-1.

    3.两个积分相等,

    即∫(0,1)dy∫(0,√y)e^yf(x)dx=∫(0,1)dx∫(x²,1)e^yf(x)dy.

    4.∵级数∑(下n=1上趋于无穷)Un收敛

    ∴根据级数收敛的必要条件,有lim(n趋于无穷)Un=0.