(1)
已知,△ABE和△ACD都是等边三角形,
可得:∠BAE = 60°= ∠CAD ,
所以,∠CAE = ∠CAB+∠BAE = ∠CAB+∠CAD = ∠DAB ;
因为,在△ACE和△ADB中,AC = AD ,∠CAE = ∠DAB ,AE = AB ,
所以,△ACE ≌ △ADB ,
可得:∠ACE = ∠ADB .
(2)
∠DFC
= 180°-(∠CDF+∠FCD)
= 180°-(∠CDF+∠ACE+∠ACD)
= 180°-(∠CDF+∠ADB+∠ACD)
= 180°-(∠ADC+∠ACD)
= ∠CAD
= 60°.