设Sn是数列{an}(n∈N+)的前n项和,a1=1,且Sn^2=3n^2·an+[S(n-1)]^2 an≠0,n=2

2个回答

  • (1)∵S[n]是数列{a[n]}(n∈N+)的前n项和

    且S[n]^2=3n^2*a[n]+S[n-1]^2,a[n]≠0,n=2,3,4,...

    ∴S[n]^2-S[n-1]^2=3n^2*a[n]

    (S[n]+S[n-1])(S[n]-S[n-1])=3n^2*a[n]

    (S[n]+S[n-1])a[n]=3n^2*a[n]

    S[n]+S[n-1]=3n^2

    ∵a[1]=1

    S[2]+S[1]=a[2]+2a[1]=3*2^2

    ∴a[2]=10

    ∵S[3]+S[2]=a[3]+2(a[2]+a[1])=3*3^2

    ∴a[3]=5

    (2)∵S[n]+S[n-1]=3n^2

    ∴S[n+1]+S[n]=3(n+1)^2

    将上面两式相减,得:

    a[n+1]+a[n]=6n+3 (n=2,3,4,...)

    用待定系数法,得:

    a[n+1]+x(n+1)+y=-(a[n]+xn+y)

    ∵-2x=6,-x-2y=3

    ∴x=-3,y=0

    ∴a[n+1]-3(n+1)=-(a[n]-3n) (n=2,3,4,...)

    ∵a[2]=10

    ∴{a[n]-3n}是首项为a[2]-3*2=4,公比为-1的等比数列

    即:a[n]-3n=4(-1)^(n-2)=4(-1)^n

    ∴a[n]=4(-1)^n+3n (n=2,3,4,...)

    ∵n=1代入上式,得:a[1]=7≠1,即a[1]不符合上式

    ∴{a[n]}的通项公式是:

    a[n]=1 (n=1)

    a[n]=4(-1)^n+3n (n=2,3,4,...)