做C关于AB的对称点E
连接E,交AB于P
那么PC+PD有最小值
AC=BC=BD+CD=3
∵CO=OE
OB=OB
∠BOC=∠BOE=90°
∴△BOE≌△BOC(SAS)
∴∠OBC=∠EBO=45°
EB=BC=3
∴∠EAD=90°
∴勾股定理:ED²=EB²+BD²=3²+1²
ED=√10
∴PC+PD=ED=√10
做C关于AB的对称点E
连接E,交AB于P
那么PC+PD有最小值
AC=BC=BD+CD=3
∵CO=OE
OB=OB
∠BOC=∠BOE=90°
∴△BOE≌△BOC(SAS)
∴∠OBC=∠EBO=45°
EB=BC=3
∴∠EAD=90°
∴勾股定理:ED²=EB²+BD²=3²+1²
ED=√10
∴PC+PD=ED=√10