证明:(1)设CD交AB于点E.
∵CD垂直平分AB
∴AE=BE,∠PEA=∠PEB=90°
在△PEA和△PEB中
AE=BE
∠PEA=∠PEB
PE=PE(公共边)
∴△PEA≌△PEB(SAS)
∴AP=BP
(2)1:∵BE是角平分线
∴∠FBP=∠ABP
∵ PF⊥AD,∴∠FPD=90°,
∴∠BFP+∠FDP=90°
又∵∠C=90°,∴∠DAC+∠FDP=90°
∴∠BFD=∠DAC
∵AD是角平分线,∴∠BAP=∠DAC.
∴∠BAP=∠BFP
在△BAP和△BFP中,
∠BAP=∠BFP
∠FBP=∠ABP
BP=BP
∴△BAP≌△BFP(AAS)
∴PF=PA
2:延长HP交AB于点Q,
∵AD是角平分线,PF⊥AD.
∴△AQH为等腰三角形,∴AH=AQ.
又因为:△BAP≌△BFP,
∴AB=FB,∠BFQ=∠BAD
在△BFQ和△BAD中
∠B=∠B
AB=FB
∠BFQ=∠BAD
∴△BFQ≌△BAD(ASA)
∴BD=BQ
又因为:AB=BQ+AQ,
∴ AB=BD+AH
3:存在,没时间算了.