let
L=lim(x->0)[(2^x+3^x)/2]^(1/x)
lnL = lim(x->0) ln[(2^x+3^x)/2] / x (0/0)
= lim(x->0) [(ln2).2^x + (ln3).3^x]/(2^x+3^x)
= (ln2 + ln3)/2
L = e^[(ln2 + ln3)/2]
=√6
let
L=lim(x->0)[(2^x+3^x)/2]^(1/x)
lnL = lim(x->0) ln[(2^x+3^x)/2] / x (0/0)
= lim(x->0) [(ln2).2^x + (ln3).3^x]/(2^x+3^x)
= (ln2 + ln3)/2
L = e^[(ln2 + ln3)/2]
=√6