y=f(x^2)
y'=f'(x^2)*2x
y=f(sin^2(x))+f(cos^2(x))
y'=f'(sin^2(x))*(sin^2x)'+f'(cos^2(x))*(cos^2x)'
=f'(sin^2(x))*2sinccosx-f'(cos^2(x))*2sinccosx
y=2x^2+lnx
y'=4x+1/x
y''=4-1/x^2
y=f(x^2)
y'=f'(x^2)*2x
y=f(sin^2(x))+f(cos^2(x))
y'=f'(sin^2(x))*(sin^2x)'+f'(cos^2(x))*(cos^2x)'
=f'(sin^2(x))*2sinccosx-f'(cos^2(x))*2sinccosx
y=2x^2+lnx
y'=4x+1/x
y''=4-1/x^2