设A(x1,y1),B(x2,y2)
联立方程:
y=kx+3……1
(x-1)²+(y-2)²=4……2
1代入2得:(x-1)²+(kx+3-2)²=4
整理,得:(1+k²)x²+(2k-2)x-3=0
由韦达定理:
x1+x2=(2-2k)/(1+k²)
x1x2=-3/(1+k²)
AB²=(x1-x2)²+(y1-y2)²= (x1-x2)²+[(kx1+3)-(kx2+3)]²
=(1+k²)(x1-x2)² =(1+k²) [(x1+x2)²-4x1x2]=(2-2k)²/(1+k²)+12
已知|AB|≥2√3,则AB²≥12
即:(2-2k)²/(1+k²)+12≥12,解不等式得:K≥(4+√7)/3,或K≤(4-√7)/3