sin(x+y)=sinxcosy+cosxsiny 具体推导:首先建立直角坐标系,在直角坐标系cos(x+y) = cosx cosy - sinx siny sin(x+y) = sinx cosy + cosx
证明sinx+cos(x+y)siny/cosx-sin(x+y)siny=tan(x+y)
2个回答
相关问题
-
求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny
-
证明cosx(cosx-cosy)+sinx(sinx-siny)=2sin(x-y)/2
-
cos(x+y)*cos(x-y)=cos*cosx+sin*siny
-
sinx +siny=1/3 cosx+cosy=1/4 求tan(x+y)和sin(x+y)
-
求证sin(2x+y)/sinx-2cos(x+y)=siny/sinx
-
求证:sin(2x+y)/sinx-2cos(x+y)=siny/sinx
-
求证:sin(x-y)/(sinx-siny)=cos[(x-y)/2]/cos[(x+y)/2]
-
sinx-siny=2cos(x+y/2)sin(x-y/2)
-
(a)证明cos(x-y)-cos(x+y)=2*sinx*siny (b)由此,证明 2sinθ(sinθ+sin3θ
-
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+