1、利用平方差公式,完全平方式展开
(a-1/2)^2(a^2+1/4)^2(a+1/2)^2=(a-1/2)^2 * (a+1/2)^2 *(a^2+1/4)^2
=(a^2-1/4)^2 *(a^2+1/4)^2 平方差公式
=(a^4 -1/16)^2 平方差公式
=a^8-1/8a^4+1/256 完全平方式展开
2、利用 a^m/a^n =a^(n-m),将式子拆开来算,就是结果
(-3/4X^6Y^3+6/5X^3Y^4-9/10XY^5)/ [3/5XY^3 ]
=[-3/4X^6Y^3)] / [3/5XY^3 ] +[6/5X^3Y^4] / [3/5XY^3 ] - [9/10XY^5)] / [3/5XY^3 ]
=...
3、合并同类项
X^M- 1/2X^m+1 - 1/5X^m + X^m+1 - 2X^m+1
= X^M - 1/5X^m - 1/2X^m+1 + X^m+1 - 2X^m+1
=(1-1/5)X^M +(-1/2 + 1-2)X^(M+1)
=4/5X^m- 3/2X^(m+1)