⑴∵AF=BF,∴∠A=∠B,
∵AB∥CD,∴∠B=∠BCD,∠A=∠D,
∵BE=CE,∴∠B=∠OCF,
∴∠OCF=∠D,又∠COD=∠COD,
∴ΔOCF∽ΔODC,∴OC/OF=OD/OC,
∴OC²=OF*OD.
⑵OC²=OF*OD=36,∴OC=6,
∵∠BCD=∠D,∴CF=DF=5,
由⑴相似得:CF/CD=OF/OC=2/3,
∴CD=3/2×5=15/2.
⑶∵OE:OC=2/3,∴OE=4,
∵AB∥CD,∴OA/OD=OE/OC,OA=6,
∴SΔABF/SΔCDF=(6/5)²=36/25,
SΔCDF=25/36*SΔABF,
又SΔOCF/SΔCDF=OF/DF=4/5(同高),
∴SΔOCF=4/5SΔCDF=5/9SΔABF,
∴SΔOCF:SΔABF=5:9.