已知:如图,AB平行于CD,AD与BC交于点F,AF=BF,点E在AB上,CE与AD交于O,EC=EB,OF=4,FD=

1个回答

  • ⑴∵AF=BF,∴∠A=∠B,

    ∵AB∥CD,∴∠B=∠BCD,∠A=∠D,

    ∵BE=CE,∴∠B=∠OCF,

    ∴∠OCF=∠D,又∠COD=∠COD,

    ∴ΔOCF∽ΔODC,∴OC/OF=OD/OC,

    ∴OC²=OF*OD.

    ⑵OC²=OF*OD=36,∴OC=6,

    ∵∠BCD=∠D,∴CF=DF=5,

    由⑴相似得:CF/CD=OF/OC=2/3,

    ∴CD=3/2×5=15/2.

    ⑶∵OE:OC=2/3,∴OE=4,

    ∵AB∥CD,∴OA/OD=OE/OC,OA=6,

    ∴SΔABF/SΔCDF=(6/5)²=36/25,

    SΔCDF=25/36*SΔABF,

    又SΔOCF/SΔCDF=OF/DF=4/5(同高),

    ∴SΔOCF=4/5SΔCDF=5/9SΔABF,

    ∴SΔOCF:SΔABF=5:9.