解题思路:(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
(1)∵|a+2|+(b+3a)2=0,
a+2=0,b+3a=0,
∴a=-2,b=6;
∴AB的距离=|b-a|=8;
(2)设数轴上点C表示的数为c.
∵AC=2BC,
∴|c-a|=2|c-b|,即|c+2|=2|c-6|.
∵AC=2BC>BC,
∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.
①当C点在线段AB上时,则有-2≤c≤6,
得c+2=2(6-c),解得c=[10/3];
②当C点在线段AB的延长线上时,则有c>6,
得c+2=2(c-6),解得c=14.
故当AC=2BC时,c=[10/3]或c=14;
(3)①∵甲球运动的路程为:1•t=t,OA=2,
∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,
∵OB=6,乙球运动的路程为:2•t=2t,
∴乙球到原点的距离为:6-2t;
(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,
此时乙球到原点的距离为:2t-6;
②当0<t≤3时,得t+2=6-2t,
解得t=[4/3];
当t>3时,得t+2=2t-6,
解得t=8.
故当t=[4/3]秒或t=8秒时,甲乙两小球到原点的距离相等.
点评:
本题考点: 数轴;非负数的性质:绝对值;非负数的性质:偶次方;两点间的距离.
考点点评: 本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.