(1)①以A为圆心任意长为半径画圆,分别交AC、AB于点H、G;
②分别以H、G为圆心,以大于
HG为半径画圆,两圆相交于K点,连接AK,则AK即为∠BAC的平分线;
③同理作出∠ABC的平分线BF,交AK于点I,则I即为△ABC内切圆的圆心;
④过I作IH⊥BC于H,以I为圆心,IH为半径画,则⊙I即为所求圆.
(2)∵∠BAC=88°,
∴∠ABC+∠ACB=180°﹣88°=92°,
∴∠IBC+∠ICB=
(∠ABC+∠ACB)=
×92°=46°,
∴∠BIC=180°﹣46°=134°.