S=1+2x+3x^2+ … +nx^(n-1)
xS=x+2x^2+3x^3+ … +(n-1)x^(n-1)+nx^n
xS-S=nx^n-[1+x+x^2+ … +x^(n-1)]
=nx^n-1*(x^n-1)/(x-1)
=[nx^(n+1)-(n+1)x^n+1]/(x-1)
所以S=1+2x+3x^2+ … +nx^(n-1)=[nx^(n+1)-(n+1)x^n+1]/(x-1)^2
第二题不需要化简
S=1+2x+3x^2+ … +nx^(n-1)
xS=x+2x^2+3x^3+ … +(n-1)x^(n-1)+nx^n
xS-S=nx^n-[1+x+x^2+ … +x^(n-1)]
=nx^n-1*(x^n-1)/(x-1)
=[nx^(n+1)-(n+1)x^n+1]/(x-1)
所以S=1+2x+3x^2+ … +nx^(n-1)=[nx^(n+1)-(n+1)x^n+1]/(x-1)^2
第二题不需要化简