证明:当公比q=1时,S=na1,T=a1^n,p=n/a1
(S/P)^n=(na1/(n/a1))^n=(a1^2)^n=a1^(2n)=(a1^n)^2=T^2.
当公比q≠1时,
an=a1q^(n-1)(n 为自然数)
S=a1(1-q^n)/(1-q)
T=a1*a2*...*an=a1*(a1q)*(a1q^2)*.*(a1q^(n-1))
=a1^n*q^(1+2+3+...+n-1)
=a1^n*q^(n(n-1)/2)
P=1/a1+1/a2+...+1/an=1/a1+1/(a1q)+...+1/(a1q^(n-1)
=1/a1(1+1/q+1/q^2+.1/q^(n-1))
=1/a1* (1-(1/q)^n)/(1-1/q)
=q(q^n-1)/(a1q^n(q-1))
(S/P)^n={[a1(1-q^n)/(1-q)]/[q(q^n-1)/(a1q^n(q-1))]}^n
=(a1^2*q^(n-1))^n
=a1^(2n)*q^(n(n-1))
=((a1^n*q^(n(n-1)/2) )^2
=T^2