解析,
(1)取x=0,得f(0)=0
取y=-x,得,f(0)=f(x)+f(-x),
即是,-f(x)=f(-x),
因此,f(x)是奇函数.
(2)f(0)=0,f(1)=-1/2,
f(1)=-1/2,那么f(-1)=-f(1)=1/2,
f(-2)=2f(-1)=1,
f(6)=f(4)+f(2)=3f(2)=-3f(-2)=-3
故,f(x)=-x/2,
f(x)在【-2,6】之间的最大值就是f(-2)=1,最小值f(6)=-3.
解析,
(1)取x=0,得f(0)=0
取y=-x,得,f(0)=f(x)+f(-x),
即是,-f(x)=f(-x),
因此,f(x)是奇函数.
(2)f(0)=0,f(1)=-1/2,
f(1)=-1/2,那么f(-1)=-f(1)=1/2,
f(-2)=2f(-1)=1,
f(6)=f(4)+f(2)=3f(2)=-3f(-2)=-3
故,f(x)=-x/2,
f(x)在【-2,6】之间的最大值就是f(-2)=1,最小值f(6)=-3.