三角形ABC中,bcosA=根号二倍的a,则a/c的取值范围

1个回答

  • ∵bcosA=√2a,∴结合余弦定理,可得:b(b^2+c^2-a^2)/(2bc)=√2a,

    ∴b^2+c^2-a^2=2√2ac,∴b^2=a^2+2√2ac-c^2.

    在△ABC中,显然有:|a-c|<b<(a+c),∴(a-c)^2<b^2<(a+c)^2,

    ∴(a-c)^2<a^2+2√2ac-c^2<(a+c)^2,

    ∴a^2-2ac+c^2<a^2+2√2ac-c^2<a^2+2ac+c^2,

    ∴-2ac+c^2<2√2ac-c^2<2ac+c^2,

    ∴-2ac+2c^2<2√2ac<2ac+2c^2,

    ∴-ac+c^2<√2ac<ac+c^2,

    很明显,c>0,∴c^2>0,由-ac+c^2<√2ac<ac+c^2可得:-a/c+1<√2a/c<a/c+1.

    由-a/c+1<√2a/c,得:(√2+1)a/c>1,∴(2-1)a/c>√2-1,∴a/c>√2-1.

    由√2a/c<a/c+1,得:(√2-1)a/c<1,∴(2-1)a/c<√2+1,∴a/c<√2+1.

    ∴√2-1<a/c<√2+1.

    ∴a/c的取值范围是(√2-1,√2+1).