分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.
(1)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF;
(2)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF.