设公差为d.
1.
a1+a2+a3=3a2=12
a2=4
d=a2-a1=4-2=2
an=a1+(n-1)d=2+2(n-1)=2n
数列{an}的通项公式为an=2n.
2.
bn=anxⁿ=2nxⁿ,设前n项和Sn.
x=0时,bn=0 Sn=0
x=1时,bn=2n Sn=2(1+2+...+n)=2n(n+1)/2=n²+n
x≠0且x≠1时,
Sn=b1+b2+...+bn=2(x+2x²+...nxⁿ)
令Bn=x+2x²+...nxⁿ
则2Bn=x²+2x³+...+(n-1)xⁿ+nx^(n+1)
Bn-2Bn=-Bn=x+x²+...+xⁿ-nx^(n+1)
=x(xⁿ-1)/(x-1) -nx^(n+1)
Sn=-2Bn
=2nx^(n+1) -2x(xⁿ-1)/(x-1)
=2nx^(n+1) -2x^(n+1)/(x-1) +2x/(x-1)