X的概率密度函数:
fX(x)={ e^-x ,x>0
{ 0 ,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dx
fY(y)=d[FY(y)]/dy
=d[∫(-√y→√y)fX(x)dx]/dy
=fX(√y)*(√y)'-fX(-√y)*(-√y)'
=fX(√y)*[1/(2√y)]-fX(-√y)*[-1/(2√y)]
=1/(2√y)*[fX(√y)+fX(-√y)]
=1/(2√y)*[e^(√y)+e^(-√y)]
所以Y的概率密度函数:
fY(y)={ 1/(2√y)*[e^(√y)+e^(-√y)] ,y>0
{ 0 ,y≤0
要注意积分上下限为变量的求导的方法,d[∫(-√y→√y)fX(x)dx]/dy=fX(√y)*(√y)'-fX(-√y)*(-√y)'这一步是关键