已知曲线C:(5-m)x 2 +(m-2)y 2 =8(m∈R)

1个回答

  • (1)原曲线方程可化简得:

    x 2

    8

    5-m +

    y 2

    8

    m-2 =1

    由题意,曲线C是焦点在x轴点上的椭圆可得:

    8

    5-m >

    8

    m-2

    8

    5-m >0

    8

    m-2 >0 ,解得:

    7

    2 <m<5

    (2)证明:由已知直线代入椭圆方程化简得:(2k 2+1)x 2+16kx+24=0,△=32(2k 2-3)>0,解得: k 2 >

    3

    2

    由韦达定理得: x M + x N =-

    16k

    2 k 2 +1 ①, x M x N =

    24

    2 k 2 +1 ,②

    设N(x N,kx N+4),M(x M,kx M+4),G(x G,1),MB方程为: y=

    k x M +6

    x M x-2 ,则 G(

    3 x M

    kx M +6 ,1) ,

    AG =(

    3 x M

    kx M +6 ,-1) ,

    AN =(x N,kx N+2),

    欲证A,G,N三点共线,只需证

    AG ,

    AN 共线

    3 x M

    x M k+6 ( x N k+2)=- x N 成立,化简得:(3k+k)x Mx N=-6(x M+x N

    将①②代入可得等式成立,则A,G,N三点共线得证.