(1)原曲线方程可化简得:
x 2
8
5-m +
y 2
8
m-2 =1
由题意,曲线C是焦点在x轴点上的椭圆可得:
8
5-m >
8
m-2
8
5-m >0
8
m-2 >0 ,解得:
7
2 <m<5
(2)证明:由已知直线代入椭圆方程化简得:(2k 2+1)x 2+16kx+24=0,△=32(2k 2-3)>0,解得: k 2 >
3
2
由韦达定理得: x M + x N =-
16k
2 k 2 +1 ①, x M x N =
24
2 k 2 +1 ,②
设N(x N,kx N+4),M(x M,kx M+4),G(x G,1),MB方程为: y=
k x M +6
x M x-2 ,则 G(
3 x M
kx M +6 ,1) ,
∴
AG =(
3 x M
kx M +6 ,-1) ,
AN =(x N,kx N+2),
欲证A,G,N三点共线,只需证
AG ,
AN 共线
即
3 x M
x M k+6 ( x N k+2)=- x N 成立,化简得:(3k+k)x Mx N=-6(x M+x N)
将①②代入可得等式成立,则A,G,N三点共线得证.