F(2,0)
p=4
y^2=8x,a>0,b>0,d>0,e>0
A(2a^2,4a),B(2b^2,-4b),D(2d^2,-4d),E(2e^2,4e)
a=b,d=e
k(AB):k(DE)=1
a≠b
k(AB)=2/(a-b),k(DE)=2/(e-d)
k(AB)=4a/(2a^2-2)=-4b/(2b^2-2)
ab=1.(1)
k(AD)=4a/(2a^2-1)=-4d/(2d^2-1)
2ad=1.(2)
k(BE)=-4b/(2b^2-1)=4e/(2e^2-1)
2be=1.(3)
(1),(2),(3):
a=2e,b=0.5/e,d=0.25/e
k(AB)=2/(a-b)=2/(2e-0.5/e)=4e/(4e^2-1)
k(DE)=2/(e-d)=2/(e-0.25/e)=8e/(4e^2-1)
k(AB):k(DE)=1/2